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ABSTRACT

An incident plane wave is scattered from a periodic corrugated
surface consisting of finite-depth parallel plates. Each period is further
divided by an additional finite-depth parallel plate into two regions-
one with the same density and wavenumber values as the free-space
region above the plates, and the second with different (but constant)
density and wavenumber values. The plates and bottoms have hard
(Neumann) boundaries.

Solutions of the Helmholtz equation, with unknown amplitude
coefficients, are assumed in the various geometric regions. By requir-
ing that the pressure and velocity be continuous functions at the
boundaries, sets of linear equations are obtained that relate the
amplitudes for arbitrary incident angles. Equations for normal inci-
dence are solved using a variation of the modified residue calculus
technique involving two zero shifts, and the results yield the ampli-
tudes as values or residues of a meromorphic function. With the ex-
ception of the finite depth, this paper is similar to NRL Report 7321.

PROBLEM STATUS

This is an interim report on the problem; work continues.

AUTHORIZATION

NRL Problem S01-40
Project RF 05-552-402-4070

Manuscript submitted December 2, 1971.
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SCATTERING FROM A PERIODIC CORRUGATED SURFACE
IX .

Part 4-Finite-Depth Alternately Filled Plates with Hard Boundaries

1. INTRODUCTION

The problem considered in this report is the calculation of the scattered and dif-
fracted fields which result when plane waves are incident on a periodic corrugated surface,
such as that illustrated in Fig. 1. The surface consists of infinitesimally thin finite-depth
parallel plates with lossless bottoms. The periodicity interval is 29, and the distance be-
tween two adjacent plates containing a "homogeneous" or "free-space" region is 2a.
"Free space" means that the region has the same density and wavenumber properties as
the region A above the plates (see Fig. 1), which is "free" of plates. For this problem, a
convenient thickness parameter is defined by t = V/a. A second region of "inhomogeneous"
density and wavenumber structure (region C), with a width 2(9-a), consists of density and
wavenumber values which differ from those in the free-space region. Both the plates and
the bottoms have hard (i.e., Neumann) boundary conditions imposed on the velocity po-
tential Q. This report is a continuation of a series of papers and reports (1-5) in which
additional references to the literature can be found.A/~~/'

X / ® k, PA

/ 

- 21+a -a a 22-a 2+a

t ~~~~X=Z=-c

Z= -d 2a 

Fig. 1-Plane wave incident at an angle Oi on a finite-depth (d) corrugated surface
which is periodic (period 29). Shading indicates regions of density and wavenumber
inhomogeneity (region C) as distinct from the free-space regions A and B. The dis-
crete scattering angles are indicated by On.

Section 2 presents the basic formalism and the assumed forms of 4 in each geo-
metric region of the problem. Each potential 4 contains unknown amplitude coefficients.
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The requirement that the pressure and velocity be continuous across the common
interfaces yields, in Sec. 3, linear equations relating the various amplitude coefficients.
The equations are general in the sense that the incident angle is arbitrary. The equations
for the special case of normal incidence are solved in Sec. 4 using a variation of the modi-
fied residue calculus method involving two sets of zero shifts. The amplitudes are shown
to be given in terms of values or residues of a meromorphic function.

A summary is presented in Sec. 5. This present report is confined to analytic
results only.

2. BASIC FORMALISM

The formalism is similar to that present in previous papers and reports (1-5). Details
will often be omitted, and results which can be derived by previous methods will merely
be stated. Particular reference is made to Ref. 4 because of the similarity of "thickness"
and boundary conditions to this report.

The problem is to calculate the velocity potential 4'd satisfying the two-dimensional
Helmholtz equation*

I 2 a 2 k2
aX_2 +aZ_2 + ly IO(XZ) = (2.1)

for plane waves 4i incident at angles Oi on a periodic surface (period 29) consisting of
plates of finite-depth d with lossless bottoms. The periodicity interval is further divided
by a parallel plate into two regions B and C which are, respectively, "homogeneous," or
"free space," and "inhomogeneous," or filled with density and wavenumber structure
differing from the free-space region. The free-space regions A and B are specified by the
density PA and the wavenumber k. Two plates without structure are separated by a dis-
tance 2a. The three geometric regions of the problem are indicated by the label 'y = A,
B, or C. The wavenumber structure, as in Refs. 3-5, is given by kA = kB = k and kc = Nk
where N is the constant wavenumber structure parameter. The density structure, as in
Refs. 3-5, is given by PA = PB and PC = PPA where p is the density structure parameter.
Region A is the region for which z > 0. For both the regions B and C, the condition
-d 6 z < 0 exists. In addition, for B, -a < x + 2mV < a, while for C, a < x + 2mQ <
2V-o-, where m = 0 +1, . The surface z = S(x) is given by

0 . x= a + 2mV
S(x) = (2.2)

-d, x * a + 2m9 (m = 01, ....)

and the hard or Neumann boundary condition is given by

aaY [x, S(x)I = 0 (2.3)

*The factor exit is suppressed throughout this report.
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where n is the normal to the surface S(x). In addition, 4't, has the following properties:

a. 0'Y and IV 4 I are finite and continuous in each region, except at the plate
edge where IV4',I = 0(r(1 7 2)+e) and e = -r- 1 sin-1 (u/2), as in Ref. 4. The parameter I
a is defined later. m

b. The pressure py = -iwpy 4' and the normal velocity vy = -a4' 7 /az are
continuous at z = 0.

c. The quantity HA - Pi represents upgoing waves as z e o.

The field representations are given by

a. OA (x,z) = eik (aOx-oOz) + L Aheik (anx +Onz)
n=-Co (2.4)

where the first term is the incident plane wave V'i, an = sin (n = o + nA (grating equa-
tion), On is the scattering angle, A -_/2Q, X is the incident wavelength, and the super-
script h stands for hard.

b. For Ix I <a,

00

'B(Xz) = ,, Bjh cos(j7r(x+a)/2a) cos[kqj(z+d)] (2.5)
j=0

where Pj 2 + qj2 = 1 and pj =_ j7r/2ka - jAt/2(t = 9/a); and

c. for a < x < 2k-a

00

4'0 (xz) = 2 Cjh cosUku(x-a)] cos[krj(z+d)] (2.6)
j=0

where r-2 + (iu) 2 = N2 , u - At/2(t-1), and u; = rj when N = 1. The potentials SIB and
4'c satisfy Eq. (2.3). Field representations outside these regions are given by the Floquet
conditions in Ref. (4), Eq. (2.10).

3. GENERAL LINEAR EQUATIONS AND FLUX CONSERVATION

To derive the linear equations relating An and Bh, we require the continuity of
pressure and velocity across the interface z = 0, IxI < a. This yields

VJA(X,O)= 4 B(X,O)

and

a4'A (xO) = "aIB(X,O).
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Substituting appropriate field expressions into these relations, solving for the Bjh ampli-
tudes in terms of the An, and manipulating the resulting equations yields the set of
linear equations

anAhI (m eikm + m )T, ~ ~ f~qn Onfm l n~qm

e-ikdqm eikd \ = m\
OI~m pO~m (3-qm) =(27ri/At)qm rm m { 01

(3.1)

where

Inm = e-TianlAt - (-)meeTian/At (3.2)

and

2,m = 0

1,m>0J

Equations relating An and Ch follow from the continuity of pressure and velocity
at z = 0, a < x < 2Q-a, which are

PA 'A(X,O) = Pc Oc(xXO)

and

a4'A (X,O)- a= c (X,O).

The equations are given by

00

anl YAhjn _aojom 7i°n~nn _fJm _ Tir ah(±)Ch = °r. On+Um (OO+um 2u m " I 0
n= n / (

Jn m = e7rian/A\t (1-(-)m enrian/u

where

and

The flux conservation relation can be simply written in terms of the reflection co-
efficient R

R-E IAl n 2(3/h1 0) = 1 (3.6)
n n

(3.3)

m = irm sin(kdrm) ± PUm cos(kdrm).

(3.4)

(3.5)
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since there is no energy loss in transmission. The sum is over integers n such that an is
real. The Rn terms are the individual spectral reflection coefficients.

Equations (3.1) and (3.3) are the equations for the most general case of incident
angle (arbitrary (x = sin Oi). This most general case apparently cannot be solved by the
methods presented. Instead, the case of normal incidence (a0 = 0), with t, p, and the
wavenumber parameter N arbitrary, is presented in the next section.

4. CASE OF NORMAL INCIDENCE (a0 = 0)

The case of arbitrary incident angle and t = 1 was solved in Ref. 2. The case of
normal incidence (a0 = 0) and arbitrary values of t is discussed here. The problem is thus
a generalization of some problems due to Deryugin (6), which can also be found in a
book by Beckmann and Spizzichino (7). The method used is a variation of the modified
residue calculus method (8). For a0 = 0, and excluding values of t for which sin(irn/t) = 0,
Eqs. (3.1) and (3.3) reduce to

/e-ikdqm eikdqm
Ln An sin(7rn/t) nq 3nmT~nqm ± f3+q 

n=1

-(ir/A 2 t) im0 (A e-ikd _ eikd) (4.1)

+ (7r/2A2 t) qrn rm B{ 0 (m even)

where Bh = 0 (m odd), O3n = O-n, Ah = Ah from the field symmetry, and

n A hsin (7rn/t) +r An 2uA 5mO t- (7r/8uA)Tm h(± Cm = 0(m even)

(4.2)
where Ch = 0 (m odd).

Integrals of the form

(2irf1 fe-ikdqm eikdqm)
f21ri c -qm w+qm

and

(2ri)-l J G(coU) d (m 0= 4 2, 4)

where C is a closed contour at infinity, yield residue series which match Eqs. (4.1) and
(4.2), respectively, if we choose the meromorphic function G(co) to have the following
properties:

a. G(w) has simple poles at X = On (n = 1, 2, 3, . ).
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b. G(o) has simple zeroes at wi = q'm -qm + am (m = 2, 4, ... .) and at
W = Ua - Um + Vm (m = 2, 4,...). These zeroes are shifted from known values at
qm and um. The 5m shifts are found numerically from the symmetry condition

G(qm) =-e2ikdqm G(-qm) )43

and the vm shifts are obtained from the symmetry condition

G(um) = am h G(-um) (4.4)

where ah = a-+lah-. The asymptotic values

6 = lim 6 m = 0 and v = lim vrn = -(2iu/7r) sin-l (a/2),
m 00 Mr-00

where

01, No 
a =lim h= -p . (4.5)

m L1 +pN=flnitej

can be derived as in Refs. 2 and 4. The p = case is that of Deryugin (6,7).

c. G(co) = O(W-(1/2)-E) as Ilcs, where e = v/2iu and, as an edge is ap-
proached, IV4'71 = O(r-(1/2)+e)

G(w) is explicitly given by

G(w) = G(-1) H~(woq') He(w,u') Hi1(1,) e-i(l+w)H (4.6)

where

H = (At)- 1(t Int -(t-1) ln (t-1)).

The constant G(-) is given below, and the infinite products are discussed in Refs. 2 and
4. In order that the residue match Eqs. (4-1) and (4-2), the following identifications
(which follow after some algebraic manipulations) must be made:

R(i30) = nAh sin('rn/t) (n > 1) (4.7)

(where R(03) is the residue of G(o) at X = ,),

Bh = (4A 2 t/irqm)e-ikdqm G(qm), (m = 2, 4, ... ) (4.8)

Ch = -(8uA/7r(jh+) G(um), (m = 2, 4, ... ) (4.9)

G(-1) = -(7r/2uA) - (7r/4uA)h-Ch, (4.10)

C8 = 2(1 + GAo3)I(Gar3+ - aoh), (4.11)
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exp(2ikd) [Ga' -o a8] + Ko (4.12)a
Ga8 8- ~- K, a8

and nrll

Bh= eikd(1+K) + A8(1-K)e-ikd (4.13)

with the definitions

G(-1) -f(-lq') He(-l',a) Hi(1,) e+2jH (4.14)

G(+1) le(l,q') Ile(l,u') rl1(-l,,)

K, (t-1)(1+Ge2ikd), (4.15)

and

K (1-Ge2ikd)I(1+Ge2ikd). (4.16)

Note that substituting Eq. (4.12) into Eq. (4.11), and the resulting expression for Eq. (4.11)
into Eq. (4.10), yields G(-1) in terms of known quantities. Hence G(co) and, thus, all
the amplitudes are well defined once the zero shifts are known. From Eqs. (4.7)-(4.9),
for n > 1, the forms of the amplitudes are

u (-)n'+lnA2G(-1)ne (Onq ) re (gnu ) H1 (143) -0+00H(
- On sin(7rn/t) HI(-1,q') re(-1,U') Hi (14,) (4.17)

Bh -4A2G(-1) He (qm~q ) le (qmyu ) Hi ( 1,O) e-i(1+qm )H-ik dqm, (4.18)
M rqm He (-1,q ) Hle(-1l,u ) Hj(qm,0)

and

Ch - -8uAG( 1) He (Un, q ) fem (,nm H (10) 1( p~-~+u )H (m =2, 4 ............................... ) (4.19)

Values for A8, Bo, and C8 are given by Eqs. (4.12), (4.13), and (4.11) respectively.

The numerical calculation of the zero shifts is different from the calculations given
in Ref. 1-4. Both the calculation and the numerical results for the reflection coefficient
Rn will be developed in a future paper.

5. SUMMARY

General linear equations have been derived which relate the amplitude coefficients in
the various geometrical regions of a periodic, inhomogeneously loaded, finite-depth parallel
plate surface with hard boundaries when a plane wave is reflected from the surface. For
the special case of normal incidence (ao = 0) the equations were solved using a variation
of the modified residue calculus method. The edge behavior of the fields was presented
and shown to be similar to the results given in Ref. 4. Only the analytic results are pre-
sented in this report. The numerical procedure used, and the numerical results, are being
worked on and will be published at a later date.
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